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Abstract. Alzheimer’s disease and other neurological diseases are often
characterized by brain atrophy. It is hypothesized that such degradation
directly affects connectivity as measured by whole brain tractographies
and their derived connectivity networks. It is unclear, however, that cur-
rent network construction methods provide either the most useful or
efficient representation of the underlying connectivity structure. In the
present work, we study the applications of a generative network model
that can be used for automated cortical parcellation as well as network
summary. We evaluate its performance through an independent classifi-
cation task. In particular, we study whole brain tractographies from 96
subjects from the Alzheimer’s Disease Neuroimaging Inititive (ADNI).
We fit a Mixed Membership Stochastic Blockmodel (MMSB) to both an
anatomically generated connectome as well as a larger, finely resolved
connectome. We reduce each network to a much smaller block connec-
tivity representation, and then use a generic Support Vector Machine to
classify the resulting matrices by disease category. Our results suggest
that mixed membership blockmodels produce parsimonious representa-
tions of existing anatomic connectomes, as well as useful parcellations of
higher resolution networks.
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1 Introduction

In recent literature, the brains of numerous organisms have often been modeled
as a network [1]. These so-called “connectomes” provide a useful mathemati-
cal abstraction for understanding underlying patterns of brain connectivity. In
particular, the construction of connectivity networks has opened the door to
a variety of graph theoretic analytic tools. These include centrality measures,
modularity, and spectral analyses [2, 3]. Important results stemming from these
tools include the discovery of a strong core-periphery topology in brain connec-
tivity networks (the “rich club”) [4], and the importance of these topologies in
neuro-degenerative diseases [5, 6].



These methods have mathematical connections to random network theory, an
active area of research. It is useful to examine relatively new results and models
in these fields in order to develop better methods.

In the present work, we propose the use of a variant of a well-known genera-
tive network model, the Stochastic Blockmodel (SBM), to produce parcellations
and summary representations of human connectomes. Originally developed for
social network analysis, SBMs associate each node with one of a fixed number
of communities (blocks), and assume the probability of observing an edge be-
tween any two nodes is dependent on their respective communities. The Mixed
Membership extension [7] of the Stochastic Blockmodel allows for nodes to be
in multiple groups (i.e. to have a distribution of affiliations), an extension which
better models the formation of rich clubs. Blockmodels also have a useful alge-
braic interpretation, providing a low rank assumption on the expectation of the
random network. Finally, because this is a generative model, through the use of
information criteria we are provided with principled methods of choosing model
parameters, in this case specifically the number of clusters.

We validate the utility of Blockmodels for the human connectome in two
cases, both of which involve an independent classification task between Alzheimer’s
Disease patients and a control group. We first fit models to a fairly coarse
anatomical parcellation as a further graph clustering method, showing that it
provides comparable classification accuracy with a fraction of the dimensions
(nodes) compared to the original networks. We also fit block models to “contin-
uous connectomes”, which are very fine parcellations at the cortical mesh scale
(∼ 30000 nodes), in order to produce connectivity based parcellations of the
whole cortex.

2 Mixed Membership Stochastic Blockmodels

The (non-mixture) Stochastic Blockmodel (SBM) is a latent variable generative
model for binary directed graphs [8–10]. Defined for a random graph G composed
of fixed nodes V and random binary edges E, it associates each node i with
exactly one of K blocks using a hidden label zi. Each block has some probability
of interacting with another block (including itself). This interaction structure
is captured by the block interaction matrix B, where the elements of B are the
coefficients for Bernoulli random variables capturing the possible existence of
edges. For the random edge between nodes i and j with associated labels zi and
zj the edge exists with probability Bzi,zj .

The Mixed Membership Stochastic Blockmodel (MMSB) [7] is a flexible ex-
tension of the SBM that relaxes the assignment of nodes from a single group or
cluster label to a distribution of group memberships; this is then expressed as
labels for each of the possible edges of a node. Instead of one label per node in
the SBM, the MMSB assigns one label per possible edge.

More formally, for every ordered pair of nodes (i, j) ∈ V ×V we assign labels
zi→j and zj←i, which are the memberships of nodes i and j respectively in the
context of the directed edge i → j. Note that (i, j) and (j, i) may have distinct
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Fig. 1: Diagram of the MMSB. The inner box in red is repeated for every entry
in Adj. The priors for B are not pictured.

labels. It is helpful here to construct label vectors ~zi→j and ~zj←i ∈ RK . Each
label vector ~zi→j = ~ezi→j

= [. . . 0 1 0 . . . ]T , where ~zi→j has 1 in the zi→j entry,
and is zero elsewhere.

Each edge i → j then exists with probability ~zTi→jB~zj←i. We refer to the
random network adjacency matrix associated with this model as Adj. Each in-
dependent realization of the random adjacency matrix is referred to as Adjn,
and is generated by the following process:

1. For each node i ∈ V
a) Draw a membership distribution vector πi ∼ Dirichlet(α)

2. For each pair of nodes (i, j) ∈ V × V
a) Draw a membership indicator zi→j ∼ Multinomial(πi)
b) Draw a membership indicator zj←i ∼ Multinomial(πj)
c) Sample their interaction Adjni,j ∼ Bernoulli(~zTi→jB~zj←i) where B is the

K × K matrix of block interaction probabilities, and where each entry
Bi,j ∼ Beta(ai,j , bi,j).

This provides the following joint distribution:

P (Adjn, {πi}, {zi→j , zi←j},B|α, a, b) =∏
i,j

P (Adjni,j |zi→j , zj←i, B)P (zi→j |πi)P (zj←i|πj)

×
∏
i

P (πi|α)
∏
i

P (B|a, b)

Like many other simple generative mixture models (e.g. Latent Dirichlet
Allocation), our overall objective is then to estimate the posterior distribution
of hidden labels that maximizes the probability of the observed data.



In the context of human connectomes, the matrix Adj is the N ×N connec-
tivity matrix between ROIs, and the blocks are a form of “soft” clustering on
the ROIs. We treat each subject as a realization Adjn of the random network.

2.1 Estimation Methods

For small networks, we sample from the posterior distribution via Collapsed
Gibbs sampling, collapsing both priors. We provide the distributions below, using
the following notation:

Nz
i→ number of outward labels for node i assigned the label z

Nz
j← number of inward labels for node j assigned the label z

Y 1
z1→z2 number of observed edges from label z1 to z2
Yz1→z2 number of possible edges from label z1 to z2

P (zi→j = z|{zk→r}(k,r)6=(i,j)) ∝
Nz

i→ + α

N +Kα

Y 1
z→zj←i

+ a

Yz→zj→i
+ a+ b

(1)

P (zj←i = z|{zr←k}(k,r) 6=(i,j)) ∝
Nz

j← + α

N +Kα

Y 1
z←zi→j

+ a

Yz←zi→j
+ a+ b

(2)

Our Collapsed Gibbs Sampler scheme for the MMSB iterates over the set
of all possible edges (all pairs of nodes), randomly reassigning labels according
to Equations 1 and 2. In practice for small networks (e.g. the pre-parcellated
FreeSurfer ROIs with 68 nodes), this converges quickly. For large networks how-
ever the size of each pass is much larger, and thus Gibbs Sampling is unfortu-
nately too slow to be practical. We instead use Stochastic Variational Inference,
a stochastic gradient descent method for mean field inference of the MMSB.
The specifics of the method is described fully in [11], and we make use of their
provided code, with minimal changes for our particular domain.

Given posterior estimates of the πi membership vectors, the adjacency matrix
of the expectation of the model has a succinct linear algebra form:

E[Adj|π] = πTBπ

where π is a matrix with the membership vectors as columns. This can be
approximated by substituting in posterior estimates of π and B. For our purposes
we further define an empirical group connectivity matrix:

Bemp = π̂Adjπ̂T (3)

which is interpreted as an estimate of a network realization’s block connec-
tivity. Note that here the diagonal is generally not zero, and represents the
within-block connectivity.



2.2 Priors and Hyper-parameter Selection

In the MMSB generative process there are several hyper parameters and priors.
The entries of B are Beta(a, b) distributed, using the conjugate prior of the
Bernoulli distribution. The membership vectors πi have an associated uniform
mixing parameter α for their Dirichlet prior; while structure and information
could be added to either of these distributions, our parameter choices keep the
distributions symmetric and relatively uninformative (See Section 3).

Finally, the choice of the number of blocks is an important hyper-parameter
controlling model specificity and complexity. Numerous models have been pro-
posed placing a prior on the number of blocks [12, 13]. These models, which fall
into a class of models known as Non-Parametric Bayes, have been particularly
popular in previous works on probabilistic automated connectivity based seg-
mentation [10, 13]. Due to the lack of hyper-parameter selection (i.e. selection
of the number of blocks), inferences can easily be made on domains without a
priori knowledge of the structures in the data.

However, this is not the only option for selecting the number of blocks in
an uninformed manner. We can, instead, view each particular choice of K as
an individual model. Through the use of an information criterion, we may then
select an appropriate model (i.e. the block model with a “good” choice of the
number of blocks). This allows us to fix the number of blocks across different
realizations of the graph, yet still compare different choices of K in a principled
manner.

Model selection remains an open area of research, including in the context of
complex networks [14]. There is no dominant information criterion, but several
are commonly accepted in the literature. The Bayesian Information Criterion
(BIC) is one such criterion, and suggested by the original MMSB paper [7]. An-
other option is the Deviance Information Criterion (DIC) [15]. Both reward good
fits to observed data with respect to log-likelihood while penalizing larger, more
complex models, using the number of parameters as a measure of complexity.

BIC and DIC for this model are defined as follows:

BIC ≈ 2 logP (Adj|{πi}, {zi→j , zi←j}, B, α, a, b)− |2K2 +K| log(n2)

DIC = 2E[logP (Adj|{πi}, {zi→j , zi←j}, B, α, a, b)] −
P (Adj|E[{πi}, {zi→j , zi←j}, B|α, a, b])

While BIC is linear in the number of parameters (and thus quadratic in
the number of blocks, as seen here), DIC attempts to penalize the “effective
number of parameters” [16]. DIC also usually requires sampling from the pos-
terior distribution of parameters ({πi}, {zi→j , zi←j}, B). Though this could be
accomplished simultaneously with the fitting of the blockmodel, here we sample
even more for the DIC estimation, using 1000 posterior samples. Though not
as universally accepted as BIC, DIC provides better results as measured by our
predictive task.



3 Data and Procedure

Our data are taken from 96 subjects scanned as part of ADNI-2 [17], a continua-
tion of the ADNI project in which Diffusion Imaging was added to the standard
MRI protocol. The same dataset was used in Prasad et al. [18], in which the fol-
lowing description is featured. It is reproduced here for completeness, but both
the data and its description are effectively the same, with the changes detailed
below.

The dataset includes diffusion MRI scans from 50 cognitively normal controls,
as well as 46 individuals with Alzheimer’s Disease. Subjects were scanned on
3-Tesla GE Medical Systems scanners, which acquired both T1-weighted 3D
anatomical spoiled gradient echo (SPGR) image volumes as well as diffusion
weighted images (DWI).

The T1-weighted images were first cleared of extra-cerebral tissue, then cor-
rected for inhomogeneity and registered to the Colin27 template using FSL
FLIRT [19]. DWI images were corrected for head motion and eddy current distor-
tion via FSL’s eddy correct tool. Tractographies were generated for each subject
through a global probabilistic tractography method based on the Hough trans-
form [20] using 10,000 fibers (note that this number differs from [18], which used
a lookup table accelerated method and 35,000 fibers).

3.1 Connectome Generation

In order to produce FreeSurfer anatomical regions of interest (ROI) connectivity
networks, we segmented each subject’s cortex into 34 ROIs per hemisphere.
Each region was dilated using an isotropic box kernel to ensure its intersection
with white matter. Weighted connectivity networks (connectomes) were then
generated by counting for every pair of regions the number of fibers intersecting
both regions at any point along the fibers.

High resolution connectomes were also computed on the full cortical mesh
using a kernel based continuous connectivity framework [21]. Each kernel was
sampled at approximately 32000 points and thresholded, providing an 8% sparse
connectome which we treat as our graph adjacency matrix. Kernels were then
registered to one control subject (which was not used in cross validation) by
eigenvector matching.

Both these network generation methods produce weighted adjacency matrices
Adjn, which we treat as realizations of random networks. Note that two different
groups of models are fit, one on the anatomical regions and one on the cortical
mesh connectomes.

3.2 MMSB and SVM Fitting and Scoring

We fit a mixed membership stochastic blockmodel to one control subject for
varying numbers of blocks. In the case of the FreeSurfer ROIs, we use K ∈
{8, 10, . . . , 20}. In the case of the (sampled) Continuous Connectomes, we used
K ∈ {40, 42, . . . , 80}. We further computed results for an anatomically seeded



blockmodel, using the Freesurfer ROIs on the cortical mesh. This necessarily
uses K = 70 (one region in each hemisphere is usually not connected to any
streamlines using FreeSurfer, and thus is dropped unless using the regional seeds
themselves).

Throughout the process we use α = 0.1, a = 11T , and b = 5I + 11T . Using
the computed membership vectors πemp

i we then construct the observed block
connectivities Bemp for each subject’s Adj matrix by the following:

Bemp = π̂Adjπ̂T

For each fitted block model we also calculate both BIC and DIC scores.
For both the empirical block connectivities Bemp as well as the full connec-

tomes Adj we extract the upper triangular elements and vectorize them to form
features. Since the original adjacency is symmetric, the block connectivities are
symmetric as well. We train a kernel support vector machine (SVM) using the
vectorized connectomes, tuning SVM parameters through an 8-fold validation
step before calculating test accuracy on a held out set. We restrict these clas-
sifiers to linear kernels. This is repeated for 10 cross validation test folds, for
each of which we measure performance in terms of precision, recall, and overall
accuracy. We then report the mean of each measure across the folds.

As a means of fair comparison to a generic parcellation, we also generated
regions from an `1 normalized uniform random vector, fixing the number of
regions (blocks) to be the same as in the model selected by the BIC and DIC.

4 Results

After running our procedure we arrive at two distinct sets of classification ac-
curacy scores, one for the anatomically generated parcellation and another for
the cortical connectivity kernel. Performace results based on anatomical ROI
networks are displayed in Table 1. For these networks, the optimal number of
blocks K was chosen to be 6 by the BIC criterion, and 18 by DIC.

Table 1: SVM performance using anatomical regions as initial network nodes.

Type Accuracy Precision Recall F1 Score
Anatomic (68 regions) 0.831 0.883 0.780 0.828

MMSB (K = 6) 0.734 0.736 0.735 0.735
Random (K = 6) 0.693 0.699 0.735 0.717
MMSB (K = 18) 0.815 0.835 0.830 0.832

Random (K = 18) 0.797 0.854 0.71 0.775

Performance results for the continuous connectivity kernel are displayed for
two different seeding choices (Table 2): one that is purely random, and one



using the vertices corresponding to the anatomic parcellation. We compare this
to the connectome generated by using the anatomic parcellation without run-
ning the MMSB. Note that this is generally not comparable to the anatomic
parcellation without the kernel; due to the low number of streamlines compared
to the number of nodes or regions (vertices in this specific case), using the same
streamline counting technique on a dense cortical mesh model is not possible.
The continuous kernel technique is itself an open area of research [21].

We here show results for the BIC suggested number of blocks, K = 40,
the DIC suggested number of blocks, K = 78, the number of anatomic regions
usually registered by FreeSurfer, K = 68, and the number of regions in the
FreeSurfer atlas K = 70. We also display results for the fitted MMSB using
seeded regions at the suggested anatomic parcellation, as well as treating the
seeded regions as hard clusters (without fitting a MMSB).

Table 2: SVM performance using dense mesh vertices as initial network nodes.
Please note that here the “Anatomic Seed” uses the FreeSurfer regions as a
initialization for the MMSB, while “Anatomic” refers to their use without further
blockmodel fitting.

Type Accuracy Precision Recall F1 Score
Random Seed MMSB (K = 40) 0.635 0.673 0.530 0.593
Random Seed MMSB (K = 68) 0.718 0.755 0.645 0.696
Random Seed MMSB (K = 70) 0.630 0.651 0.550 0.596
Random Seed MMSB (K = 78) 0.665 0.740 0.600 0.662

Anatomic Seed MMSB (K = 70) 0.653 0.667 0.630 0.648
Anatomic 0.633 0.613 0.585 0.601

5 Discussion and Related Work

The results for the anatomically parcellated networks suggest that blockmodels
accurately summarize connectomes. Unfortunately the set of linear SVM models
for the larger network strictly contains that of the smaller network, so we would
not expect a significant improvement in performance since the original case is
tractable. However while accuracy scores do not increase, the DIC chosen MMSB
representations are a little more than an order of magnitude smaller (a 68 node
undirected network has 2278 possible edges, while an 18 node network with self
edges has 175).

For the larger connectomes, the block connectivity matrices Bemp generated
by the MMSB generally allow for much better classification than those gen-
erated by the anatomic labels. For both the large and small connectomes the



(a) Exemplar Block 1. Both hemispheres, lateral, anterior, and contralateral views

(b) Exemplar Block 2. Left hemisphere only, medial and lateral views

Fig. 2: Two exemplar blocks from the Random Seed MMSB applied to the 30000
node network (K = 68); the first row shows three views of a block spanning both
hemispheres. The second row shows medial and lateral views of one hemisphere
for a different block with high connectivity in one contiguous region. Here, p is
the probability that a surface point is included in the given block.

DIC suggested networks perform well, though they are not the most accurate
observed.

In recent literature, several excellent papers have made use of similar models
for automated segmentation. While they do not perform a classification task, nor
do they use exactly the same model, their work is nevertheless highly relevant
to our own.

Anwander et al. [22] produced one of the first automated connectivity based
parcellation methods, using k-means clustering on Broca’s Area to produce a par-
cellation; their method restricted the clusters to be spatially contiguous. Jbabdi
et al. [13] introduced a non-parametric Bayes approach to connectivity based
parcellation, leveraging a Dirichlet process to learn the posterior distribution of
the number of clusters. While this is very important, due to the inherent vari-
ability in the number of clusters (by design) comparisons between model fits
between subjects and between data sets become quite difficult.

More recently two papers have used the same non-parametric Bayes style of
model, notably Hinne et al. [10] and Baldassano et al. [23], the latter of which
considers a more general problem of spatially coherent network clustering. Both
define Chinese Restaurant Process based models in order to produce posterior



estimates of the number of clusters. Relevant to our paper, Hinne et al. use a
relative of the SBM, the infinite relational model [12]. This paper particularly
highlights the “rich club” theory of brain organization in their choice of models,
defining a measure of uncertainty for cluster membership.

Outside of human connectomes, Palovic et al. [9] fit a SBM variant to the C.
elegans connectome. Their particular domain has data with cellular resolution
(the C. elegans neural system is only 300 cells total), but they make use of
very similar techniques, using Akaike’s Information Criterion (AIC) for model
selection.

Finally, the importance of the work of Sporns et al. [1, 24, 3, 25] cannot be
understated; though their methods are mostly based on graph measures and
discriminative modularity based models (opposed to the Bayesian generative
paradigm), they have provided a strong mathematical foundation for work on
human brain connectivity.

6 Conclusion

In this work, we have applied a Mixed Membership Stochastic Blockmodel to
the structural connectivity networks of the human brain. After fitting the model
for a range of parameters we apply two different selection criteria in order to
select the optimal number of blocks. We validate these results by a classification
task (independent of model selection or fitting).

For small, coarse resolution connectomes our results show that MMSB models
accurately summarize these networks, providing comparable classification accu-
racy using a much smaller network. For large connectomes these models show a
large improvement over anatomic parcellations for classification accuracy.

Though we use the accuracy as a measure of validation, it should be stressed
that these parcellations hold interpretable meaning independent of the classifi-
cation task. While as it stands the use of generative random network models in
this work and in the literature has been restricted to preliminary results and ex-
plorations, we hope that the further development of these methods might allow
for novel exploration and analysis of the brain as a complex biological network.
Towards this end we hope to expand this model to incorporate real valued edge
weights, data from multiple subjects, and more complex priors.
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